

US006236344B1

(12) United States Patent Benz et al.

(10) Patent No.: US 6,236,344 B1

(45) **Date of Patent:** May 22, 2001

(54) AC AND DC BIPOLAR VOLTAGE SOURCE USING QUANTIZED PULSES

(75) Inventors: Samuel P. Benz, Superior; Clark A. Hamilton, Boulder; Charles J.

Burroughs, Lafayette; Todd E. Harvey, Erie, all of CO (US)

(73) Assignee: The United States of America, as represented by the Secretary of Commerce, Washington, DC (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

(21) Appl. No.: 09/347,245

(22) Filed: Jul. 2, 1999

Related U.S. Application Data

(60) Provisional application No. 60/091,639, filed on Jul. 2,

(51) Int. Cl.⁷ H03M 1/00

(56) References Cited

U.S. PATENT DOCUMENTS

4,983,971	*	1/1991	Przybysz et al	341/133
5,198,815	*	3/1993	Przybysz et al	341/133
5,327,130	*	7/1994	Kang et al	341/133
5,341,136	*	8/1994	Przybysz et al	341/133
5,565,866	*	10/1996	Hamilton et al	341/133
5,731,717		3/1998	Ohshima et al	
5,798,722	*	8/1998	Przybysz et al	341/133
5,812,078		9/1998	Przybysz et al	
5,821,556		10/1998	Chew et al	
5,845,220		12/1998	Puthoff et al	
5,854,604		12/1998	Przybysz et al	
5,869,846		2/1999	Higashino et al	
5,880,647		3/1999	Kim .	
5,909,086		6/1999	Kim et al	

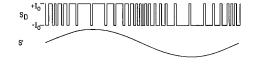
OTHER PUBLICATIONS

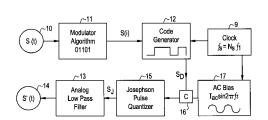
Hamilton & Benz, "A pulse–driven programmable Josephson voltage standard," Appl. Phys. Lett. 68 (22), May 27, 1996, pp. 3171–3173.

Benz, Burroughs & Hamilton, "Operating Margins for a Pulse-Driven Programmable Voltage Standard," *IEEE Transactions on Applied Superconductivity*, vol. 7, No. 2, 6/97, pp. 2653–2656.

Benz, Hamilton, Burroughs, Harvey, Christian & Przybysz, "Pulse–Driven Josephson Digiital/Analog Converter," *IEEE Transactions on Applied Superconductivity*, vol. 87, No. 2, 6/98, pp. 42–47.

Hamilton, Burroughs & Kautz, "Josephson D/A Converter with Fundamental Accuracy," IEEE Transactions on Instrumentation and Measurement, vol. 44, No. 2, 4/95, pp. 223–225.


(List continued on next page.)


Primary Examiner—Peguy JeanPierre Assistant Examiner—Jean Bruner Jeanglaude (74) Attorney, Agent, or Firm—Charles E. Rohrer

(57) ABSTRACT

A Josephson quantizer is driven by a sinusoidal microwave generator whose output is combined with a digital two-level code representing a desired waveform. The result is to produce a bipolar drive signal of increased frequency and a bipolar Josephson output with voltage increased significantly. Output voltage is developed according to the relationship $V=Nnmf_s/K_J$, where N is the number of junctions, n is the Josephson junction constant voltage step number, f_s is the sampling frequency, m is an integer multiple of the sampling frequency and is ≥ 2 , and K_I is the Josephson constant. The digital code generator receives the output of an improved modulator which incorporates a three-level to two-level transformation on the output of a standard threelevel modulator in one embodiment. In a second embodiment, a modified two-level modulator produces a bit sequence where the polarity of the next bit is allowed to change only if there is an odd number of consecutive bits of the same polarity.

21 Claims, 6 Drawing Sheets

